Isolation of the All-Bridging CO Isomer of $Cp_3Co_3(CO)_3$ and Observations Concerning a Highly Deformable Small Metal Cluster

Matthew P. Robben and William E. Geiger*

Department of Chemistry, University of Vermont, Burlington, Vermont 05405

Arnold L. Rheingold

Department of Chemistry, University of Delaware, Newark, Delaware 19716

Received August 3, 1994

Metal clusters of the cobalt group with the formula Cp_3M_3 -(CO)₃, $Cp = \eta^5$ -cyclopentadienyl, display an intriguing structural diversity. Four types of isomers (structures **A**-**D**) have been

previously reported.¹⁻⁶ Characterization of the tricobalt system has been particularly challenging. Indeed, questions about the solution structure(s) of Cp₃Co₃(CO)₃ are reminiscent of the classic Co₂(CO)₈ problem,⁷ and this cluster has been called an "exceptionally deformable molecule".⁴ Early controversies^{1,2} involving the cluster were partially resolved when isomer C, featuring a triply-bridging CO, was identified by crystallography as the favored isomer in the solid state.^{4,8} The existence of the all-bridging isomer A has been the subject of considerable speculation,¹⁻³ but detailed studies⁸ failed to identify it in either solid state or solution. This is surprising, since the all-bridging CO isomer is known for the analogous Rh system,⁹ and since bridging structures are usually preferred for first row metals compared to the heavier congeners.¹⁰ We now report the isolation of isomer A and its characterization by physical

- (1) King, R. B. Inorg. Chem. 1966, 58, 2227.
- (2) Vollhardt, K. P. C.; Bercaw, J. E.; Bergman, R. G. J. Organomet. Chem. 1975, 97, 283.
- (3) Lee, W.-S.; Brintzinger, H. J. Organomet. Chem. 1977, 127, 87.
- (4) Cotton, F. A.; Jamerson, J. D. J. Am. Chem. Soc. 1976, 98, 1273.
- (5) Lawson, R. J.; Shapley, J. R. Inorg. Chem. 1978, 17, 1772 and references therein.
- (6) Shapley, J. R.; Adair, P. C.; Lawson, R. J.; Pierpont, G. C. Inorg. Chem. 1982, 21, 1701.
- (7) Lichtenberger, D. L.; Brown, T. L. Inorg. Chem. 1978, 17, 1381 and references therein.
- (8) Bailey, W. I., Jr.; Cotton, F. A.; Jamerson, J. D.; Kolthammer, B. W. S. Inorg. Chem. 1982, 21, 3131.

methods, including X-ray crystallography. We also shed light on the behavior of isomer C in solution, showing that, contrary to previous claims,^{4,8} the apparent equilibrium between isomers C and B does not appear to be significantly dependent on solvent polarity.

The preparation of the cluster was carried out by photolysis of 2 g of CpCo(CO)₂ in toluene,¹¹ consistent with earlier methods.¹⁻⁴ The reaction residue, eluted with 1:1 pentane/CH₂-Cl₂ on alumina, gave (sequentially) red-brown CpCo(CO)₂, green Cp₂Co₂(μ -CO)₂,¹² and 630 of mg of Cp₃Co₃(μ_2 -CO)₂(μ_3 -CO) (isomer C), in accordance with earlier workers. An additional pair of brown bands eluted with CH₂Cl₂. The first of these afforded 50 mg of the new cluster Cp₃Co₃(μ_2 -CO)₃, isomer **A**, which was characterized by mass spectrometry (EI, m/z = 456, M⁺), IR ($\nu_{CO} = 1839$, 1784 cm⁻¹), NMR (¹H, CDCl₃, $\delta = 5.05$) and elemental analysis (C, 47.35, calc 47.40; H, 3.08, calc 3.32). X-ray-quality crystals grown by slow evaporation of CH₂Cl₂ solutions of the complex at 273 K showed the expected all-bridging arrangement of the three carbonyl groups (Figures 1 and 2).¹³

The title compound possesses near- $C_{3\nu}$ symmetry, with three Co atoms forming an isosceles triangle, one metal-metal bond being 1.2 pm shorter than the other two. Like the trirhodium analogue,⁹ all three Cp ligands are displaced to one side of the Co₃ plane (average elevation 32.6°), with the three carbonyls displaced to the other side (average tilt 55.4°). The metal core is slightly smaller than that of isomer C, with an average Co-Co distance of 240.4 pm compared to 247.3 pm for C.

The present result brings to 3 the number of isomers identified with $Cp_3Co_3(CO)_3$, all differing in the arrangement of the CO

- (11) Photolysis under N₂ for 96 h, followed by solvent removal and extraction with CH₂Cl₂, gave a dark brown residue after evaporation of CH₂Cl₂. All operations were conducted under N₂, although $C_{3\nu}$ -Cp₃Co₃(CO)₃ appears to be reasonably air-stable as a solid.
- (12) (a) Ilenda, C. S.; Schore, N. E.; Bergman, R. G. J. Am. Chem. Soc. 1976, 98, 225. (b) Schore, N. E.; Ilenda, C. S.; Bergman, R. G. J. Am. Chem. Soc. 1977, 99, 1781.
- (13) Crystal data for Cp₃Co₃(CO)₃: C₁₈H₁₅Co₃O₃, orthorhombic, Pmn2₁, a = 13.656(3) Å, b = 8.941(2) Å, c = 6.742(1) Å, V = 821.0(5) Å³, Z = 2, D_x=1.845 g cm⁻³, μ(Mo Kα) = 30.07 cm⁻¹, T = 238 K. Of 2590 reflections collected in two octants (Siemens P4, 2O_{max} = 60°), 1345 were used to solve and refine the structure. The noncentrosymmetric space group choice was supported by E statistics, the value of Z, and the chemically and computationally well-behaved results of refinement. A Rogers test supports the reported enantiomorph [η = 1.7(4)]. With all non-hydrogen atoms anisotropic and hydrogen atoms idealized, R(F) = 5.29% and R(wF) = 6.14%.

0020-1669/94/1333-5615\$04.50/0 ©

^{(9) (}a) Paulus, E. F. Acta Crystallogr. 1969, 25B, 2206. (b) Mills, O. S.; Paulus, E. F. J. Organomet. Chem. 1967, 10, 331. (c) Farone, F.; Schiavo, S. L.; Bruno, G.; Piraino, P.; Bombieri, G. J. Chem. Soc., Dalton Trans. 1983, 1813. (d) Although Cp₃Ir₃(CO)₃ has all terminal carbonyls (see ref 6), the indenyl analogue (C₉H₇)₃Ir₃(μ₂-CO)₃ has an all-CO-bridging structure (see: Comstock, M. C.; Wilson, S. R.; Shapley, J. R. Organometallics, in press.

⁽¹⁰⁾ Raithby, P. R. In *Transition Metal Clusters*; Johnson, B. F. G., Ed.; John Wiley and Sons: Chichester, 1980; Chapt 2.

Figure 1. Molecular structure of Cp₃Co₃(μ_2 -CO)₃ with 40% thermal ellipsoids. Co(1)-Co(2) = 2.408(1), Co(1)-Co(1a) = 2.396(1), CNT-Co(1) = 1.740(9), CNT-Co(2) = 1.750(9) Å.

groups on the metal framework (besides the crystallographically characterized⁴ **C**, isomer **B**, with one terminal and two doublybridging CO's, also seems firmly established^{4.8}). Of the various structural types known for Cp₃M₃(CO)₃ complexes, only the all-terminal isomer **D** has not been identified for M = Co. Given the strong preference for bridging CO's in the first-row metals, **D** is unlikely to be isolable for Cp₃Co₃(CO)₃.

In the process of these studies we discovered that the composition of dissolved samples of **C** was not completely in accord with previous reports. Dissolving pure **C** in mildly polar solvents such as CH₂Cl₂ or THF produces a mixture of **C** and **B**, as previously reported,^{4,8} characterized by five IR bands in the CO stretching region [ν_{CO} (cm⁻¹) = 1960, 1840, 1810, 1750, 1710]. A very similar pattern is observed for solutions in nonpolar solvents such as benzene. Although we cannot rule out the possibility that the **B**/**C** equilibrium has a minor solvent dependence, we see no evidence that, as earlier stated,⁸ **B** is the exclusive isomer in benzene. We note that quantitative measurement of isomer **B** in benzene

Figure 2. View of Cp₃Co₃(μ_2 -CO)₃ showing the elevation of the Cp rings (average 32.6°) and the CO groups (average 55.5°) with respect to the Co₃ plane.

is inherently difficult owing to spectral interferences arising from rather intense benzene absorptions at 1960 and 1810 cm^{-1} .

The redox properties of the new isomer **A** are distinctly different than those of the **B/C** mixture. Whereas the latter is subject to rapid fragmentation upon one-electron reduction,¹⁴ the former undergoes *two* reversible one-electron reductions ($E^{\circ} = -1.34 \text{ V}, -2.41 \text{ V}$ vs ferrocene^{0/+}), showing that the allbridging CO arrangement significantly stabilizes the lower cluster oxidation states. We will report on the electron-transferinduced isomerizations of the systems **A**, **B**, and **C** in a subsequent paper.

Acknowledgment. We gratefully acknowledge the support of the National Science Foundation (Grant CHE 91-16332) and the Petroleum Research Fund (Grant PRF-21305, AC3), administered by the American Chemical Society, and thank J. R. Shapley for informing us of results^{9d} prior to publication.

Supplementary Material Available: Tables giving crystal structure determination details, atomic coordinates, bond lengths, bond angles, and thermal parameters and figures showing a unit cell packing diagram and IR spectra of $Cp_3Co_3(CO)_3$ (isomers B/C) in CH_2Cl_2 and benzene (10 pages). For ordering information see any current masthead page.

⁽¹⁴⁾ Mevs, J. M.; Gennett, T.; Geiger, W. E. Organometallics 1991, 10, 1229.